Perkin 1 Abstracts: Natural Product Synthesis

PERKIN

Robert Narquizian and Jacqueline Milne

Department of Chemistry, University of Glasgow, Glasgow, UK G12 8QQ

Perkin 1 Abstracts: Natural Product Synthesis aims to highlight syntheses that have been recently published. It includes brief descriptions of biological activity and key steps. A more comprehensive list of Natural Product syntheses and isolations can be found in Natural Product Updates.

5-N-Acetylardeemin and Amauromine	
Biological activity: multidrug resistance reversal agents.	
Key steps: (a) N-phenylselenophthalimide-induced phenyl selenocyclisation of a tryptophan derivative to generate the pyrrolo[2,3-b]indole system; (b) substitution of a phenylseleno group by a prenylstannane using methyl triflate activation.	N H H H H H H H H H H H H H H H H H H H
K. M. DePew, S. P. Marsden, D. Zatorska, A. Zatorski, W. G. Bornmann and S. J. Danishefsky, <i>J. Am. Chem. Soc.</i> , 1999, 121 , 11953.	5-N-Acetylardeemin Amauromine
(-)-Adociasulfate 1	NaO ₃ SO_
Biological activity: kinensin motor protein inhibitor isolated from extracts of a sponge of the genus Haliclona.	
Key steps: biomimetic tetracyclisation triggered by an epoxide and terminated by an arene triether.	HO HO OSO ₃ Na
M. Bogenstätter, A. Limberg, L. E. Overman and A. L. Tomasi, <i>J. Am. Chem. Soc.</i> , 1999, 121 , 12206.	
Aflatoxin M ₂	
Biological activity. potent carcinogen.	0 0
Key steps: addition of dichloromethyllithium to a dihydroxy ketone.	MeO HO
G. A. Kraus and X. Wang, Tetrahedron Lett., 1999, 40, 8513.	
(±)-Akagerine and (±)-Geissoschizine	
Biological activity: Geissoschizine is an intermediate in indole alkaloid biosynthesis. Key steps: (a) nucleophilic addition of the enolate derived from 1-acetylindole to	Me N Me
a pyridinium salt; (b) acid-induced cyclisation of a 1,4-dihydropyridine; (c) Pummerer reaction.	HO"" CHO MeO ₂ C
ML. Bennasar, JM. Jiménez, B. Vidal, B. A. Sufi and J. Bosch, <i>J. Org. Chem.</i> , 1999, 64 , 9605.	OH Akagerine Geissoschizine
(+)-Azimic acid	
Biological activity: not reported.	
Key steps: chelation-controlled addition of Grignard reagents to chiral α -amino aldehydes.	HO CO ₂ H
K. K. Kumar and A. Datta, <i>Tetrahedron</i> , 1999, 55 , 13899.	

Batzelladine D

Biological activity: (a) Batzelladines A and B are micromolecular inhibitors of binding of the HIV envelope protein gp-120 to the human CD4 receptor; (b) Batzelladines F-I induce dissociation of the protein kinase called p56^{lck} from CD4; (c) biological activity of Batzelladine D is not reported.

Key steps: tethered Biginelli condensation of a guanidine aldehyde and an acetoacetic ester to generate a 7-substituted-1-iminohexahydropyrrolo-[1,2-c]pyrimidine intermediate having the *anti* stereochemistry of the methine hydrogens flanking the pyrrolidine nitrogen.

F. Cohen, L. E. Overman and S. K. Ly Sakata, Org. Lett., 1999, 1, 2169.

Clavepictines A, B and Pictamine

 $\it Biological~activity.$ inhibition of growth of murine leukaemia and human solid tumour cell lines (P-388, A-539, U-251 and SN12K1) at IC $_{50}$ = 1.8–8.5 μg mL $^{-1}$.

Key steps: stereocontrolled intramolecular Michael-type ring closure of a conformationally constrained piperidine ring system.

N. Toyooka, Y. Yotsui, Y. Yoshida, T. Momose and H. Nemoto, *Tetrahedron*, 1999, **55**, 15209.

Clavepictine A: R=Ac n = 3Clavepictine B: R=H n = 3Pictamine: R=Ac n = 1

(-)-Cytoxazone

Biological activity: cytokine-modulating activity due to the inhibition of the signaling pathway of Th2 cells.

Key steps: imino 1,2-Wittig rearrangement.

O. Miyata, H. Asai and T. Naito, Synlett, 1999, 1915.

Dammarenediol I and II

Biological activity: modest in vitro antiviral activity against Herpes simplex.

Key steps: nonenzymatic biomimetic polyene tetracyclisation of a substrate containing a tetramethylallylic alcohol initiator, an allyltrimethylsilane terminating group, and a fluorine atom to serve as a cation-stabilising (C-S) auxiliary controlling the stereochemistry of the C/D ring juncture.

W. S. Johnson, W. R. Bartlett, B. A. Czeskis, A. Gautier, C. H. Lee, R. Lemoine, E. J. Leopold G. R. Luedtke and K. J. Bancroft, *J. Org. Chem.*, 1999, **64**, 9587.

Dihydroclerodin

Biological activity: insect-antifeedant.

Key steps: (a) Mukaiyama reaction; (b) catalytic hydrogenation of an enone; (c) Chugaev elimination to give an exocyclic double bond.

T. M. Meulemans, G. A. Stork, F. Z. Macaev, B. J. M. Jansen and A. de Groot, $J.\ Org.\ Chem.$, 1999, ${\bf 64},$ 9178.

(+)-Discodermolide

Biological activity: (a) immunosuppressant; (b) stabilises microtubules and promotes polymerisation of tubulin.

Key steps: A 27 step synthesis based on boron-mediated anti-selective aldol reactions of chiral ketones.

I. Paterson, G. J. Florence, K. Gerlach and J. P. Scott, Angew. Chem., Int. Ed., 2000, 39, 377.

3-O-Galloyl-(2R,3R)-epicatechin-4 β ,8-[3-O-galloyl-(2R,3R)-epicatechin

Biological activity: the target, a proanthocyanidin derivative found in cocoa, is a protein kinase C inhibitor and cancer cell growth inhibitor.

Key steps: (a) benzylic oxidation with DDQ in ethylene glycol introduces a 2-hydroxyethoxy group; (b) TiCl₄-induced arylation of a benzylic cation creates an epicatechin dimer.

W. Tückmantel, A. P. Kozikowski and L. R. Romanczyk, J. Am. Chem. Soc., 1999, 121, 12073.

HO OH OH OH OH HO HO

Gypsetin

Biological activity: inhibits acyl CoA:cholesterol acyltransferase.

Key steps: (a) addition of a prenylborane to a chloroindoline; (b) two-fold dimethyldioxirane-induced oxidative ring closure of a tryptophan-derived diketopiperazine derivative. Deoxybrevianamide, brevianamide E and tryprostatin B were also synthesised.

J. M. Schkeryantz, J. C. G. Woo, P. Siliphaivanh, K. M. DePew and S. J. Danishefsky, J. Am. Chem. Soc., 1999, 121, 11964.

Jimenezin

Biological activity: (a) active against BST assay ($IC_{50} = 5.7 \text{ ng mL}^{-1}$); (b) potent cytotoxic activity against six human solid tumour cell lines.

Key steps: (a) efficient construction of the THP-THF fragments through a stereoselective condensation between a pyranyl aldehyde and an acetylene derivative; (b) palladium-catalysed coupling reaction between an alkyne and a terminal butenolide under Hoye's conditions.

S. Takahashi, K. Maeda, S. Hirota and T. Nakata, Org. Lett., 1999, 1, 2025.

(-)-α-Kainic acid and (+)-α-Allokainic acid

Biological activity: neuroexcitatory properties.

Key steps: (a) from an alkyne precursor, a nickel-catalysed cyclisation and a palladium-catalysed rearrangement were used in the synthesis of (+)- α -allokainic acid; (b) from an allene precursor, a nickel-catalysed cyclisation was used in the synthesis of (-)- α -kainic acid.

M. V. Chevliakov and J. Montgomery, J. Am. Chem. Soc., 1999, 121, 11139.

(–)-α-Kainic acid (+)-α-Allokainic acid

Korormicin

Biological activity: inhibits the growth of marine Gram-negative bacteria without affecting terrestrial species.

Key steps: (a) aldol condensation of a hydroxy aldehyde with an enolate of a Schiff base glycine ester to form the lactone moiety; (b) Stille coupling; (c) Sharpless epoxidation.

H. Uchara, T. Oishi, K. Yoshikawa, K. Mochida and M. Hirama, *Tetrahedron Lett.*, 1999, **40**, 8641.

(-)-Lasubine(I)

Biological activity: not reported.

Key steps: (a) formation of an enantiopure planar chiral arylaldehyde tricarbonylchromium complex; (b) highly diastereoselective aza-Diels-Alder cycloaddition; (c) intramolecular radical cyclisation reactions to afford a quinolizidinone intermediate.

H. Ratni and E. P. Kündig, Org. Lett., 1999, 1, 1997.

(+)-Laurencin	
Biological activity: not reported.	
Key steps: asymmetric alkylation-ring-closing metathesis approach to medium ring ethers.	Br H OAc
M. T. Crimmins and K. A. Emmitte, Org. Lett., 1999, 1, 2029.	
Manoalide	
Biological activity: (a) analgesic; (b) anti-inflammatory; (c) inhibition of phospholipase A ₂ (PLA ₂).	
Key steps: enantioselective aldol condensation using a $Ti(O/Pr)_{\downarrow}$ – (R) - $(+)$ -BINOL complex.	HONOHOO
A. Soriente, M. De Rosa, A. Apicella, A. Scettri and G. Sodano, <i>Tetrahedron: Asymmetry</i> , 1999, 10 , 4481.	НО
Mollamide	s — , , , , , , , , , , , , , , , , , ,
Biological activity: shows cytotoxicity against a range of cell lines with an IC ₅₀ of 1 μ g ml ⁻¹ for murine leukaemia and 2.5 μ g ml ⁻¹ against human lung carcinoma.	
Key steps: macrolactamisation.	Ph NH HN O
B. McKeever and G. Pattenden, <i>Tetrahedron Lett.</i> , 1999, 40 , 9317.	
Nakijiquinone C	HO CO ₂ H
Biological activity: selective inhibitor of the Her-2/Neu Protooncogene.	HN O
<i>Key steps</i> : (a) reductive alkylation of an α,β-unsaturated Wieland-Miescher type enone with a benzyl halide; (b) Wittig reactions.	OH OH
P. Stahl and H. Waldmann, <i>Angew. Chem.</i> , <i>Int. Ed.</i> , 1999, 38 , 3710.	
(-)-Palitantine	'
Biological activity: metabolite isolated from Penicillium palitans that exhibits antifungal and antibiotic activities.	он о
Key steps: (a) Sharpless asymmetric dihydroxylation of a dienylsilane; (b) oxidation of C-Si bond.	OH
R. Angelaud, O. Babot, T. Charvat and Y. Landais, J. Org. Chem., 1999, 64, 9613.	
Puupehedione	_
Biological activity: antitumour activity against cell lines P-388, A-549, HT-29.	$\bigvee_{i=1}^{n} \mathcal{A}_{i}$
Key steps: several strategies were attempted.	
A. F. Barrero, E. J. Alvarez-Manzaneda, R. Chahboun, M. Cortés and V. Armstrong, <i>Tetrahedron</i> , 1999, 55 , 15181.	/ ⅓H